## DIVIDE 2-DIGITS BY

I-DIGIT (I)


## GET READY

1) Complete the part whole models.

2) $7 \times 10=$

$$
7 \times 20=
$$

$4 \times 10=$
$4 \times 20=$
3) $8 \div 4=$
$9 \div 3=$
$12 \div 4=$
$15 \div 3=$
$24 \div 4=$
$27 \div 3=$

1) Complete the part whole models.

2) $7 \times 10=70$

$$
7 \times 20=140
$$



$$
\begin{aligned}
& 4 \times 10=40 \\
& 4 \times 20=80
\end{aligned}
$$

3) $8 \div 4=2$
$12 \div 4=3$
$9 \div 3=3$
$15 \div 3=5$
$24 \div 4=6$
$27 \div 3=9$

## LET'S LEARN



$$
84 \div 6=14
$$

Have a think


$$
39 \div 3=13
$$



$$
10+3=13
$$

$$
42 \div 3=14
$$


$10+4=14$


What do you notice?

Using all of the counters, how many 2-digit numbers can you make that are divisible by 3?

What if you b 7 counters?
Have a think


$$
\begin{aligned}
& 15 \div 3=5 \\
& 24 \div 3=8 \\
& 33 \div 3=11 \\
& 42 \div 3=14 \\
& 51 \div 3=17 \\
& 60 \div 3=20
\end{aligned}
$$

## True or False?

 momem (1)$$
52 \div 4>57 \div 3
$$

$$
98 \div 7<84 \div 4
$$

Can you decide without having to calculate the answers?

## True or False?

$$
\begin{aligned}
& \text { (52) } \div 4>(57 \div 3 \\
& 89 \dot{9} 8^{4} \div 3<8^{9} 4 \div 3 \overline{4}^{3} \\
& 12 \div 4=3 \\
& 24 \div 4=6 \quad 27 \div 3=9
\end{aligned}
$$

## True or False?

$$
\begin{gathered}
52 \div 4>57 \div 3 \\
10-20 \\
98 \div 7<84 \div 4 \\
70 \div 7=10 \\
140 \div 7=20 \\
70 \div 4=10 \\
80 \div 4=20
\end{gathered}
$$

## YOUR TURN

Have a go at the questions on the worksheet

