DIVIDE 2-DIGITS BY I-DIGIT (I)

GET READY

1) Complete the part whole models.

- 2) $7 \times 10 = 4 \times 10 = 7 \times 20 = 4 \times 20 =$
- 3) $8 \div 4 =$ $9 \div 3 =$ $12 \div 4 =$ $15 \div 3 =$ $24 \div 4 =$ $27 \div 3 =$

1) Complete the part whole models.

2) $7 \times 10 = 70$ $7 \times 20 = 140$

 $4 \times 10 = 40$ $4 \times 20 = 80$

3) $8 \div 4 = 2$ $9 \div 3 = 3$ $12 \div 4 = 3$ $15 \div 3 = 5$ $24 \div 4 = 6$ $27 \div 3 = 9$

LET'S LEARN

White Rose Maths

What do you notice?

Using all of the counters, how many 2-digit numbers can you make that are divisible by 3?

Wh	at if you		Have a think
	Tens	Ones	
			$15 \div 3 = 5$
			$24 \div 3 = 8$
			$33 \div 3 = 11$
			$42 \div 3 = 14$
	1	Б	$51 \div 3 = 17$
	L	5	$60 \div 3 = 20$

True or False? Have a think 0 $52 \div 4 > 57 \div 3$

$98 \div 7 < 84 \div 4$

Can you decide without having to calculate the answers?

True or False? 52÷4>57÷3 $\frac{8}{12} \div 4 \div 7 = 2 \\ \frac{9}{12} \div 3 \div 7 = 3 \\ \frac{12}{12} \div 4 \div 7 = 7 \\ \frac{12}{12} \div 3 \div 7 = 5$ $24 \div 4 = 6$ $27 \div 3 = 9$

True or False? $52 \div 4 > 57 \div 3$ 10 - 20 > 20 • $40 \div 4 = 10$ $70 \div 7 = 10$ $80 \div 4 = 20$ $140 \div 7 = 20$

Have a go at the questions on the worksheet

